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Figure 1: Tabletop lean posture classes (1-4): elbow, forearm, partial hand, and full palm (standing and seated).  

The black shapes are lean contacts between a user’s body part(s) and a table’s surface.

ABSTRACT 
Interactive tabletops allow direct touch manipulation and 

recognizing simultaneous touch events. Users sometimes 

lean on the touch surface creating unintended touch input. 

Our work demonstrates how this unintended input can be 

employed to enhance interaction. In a study we develop a 

posture set organized into four classes. We present a vision-

based machine-learning algorithm using an active shape 

model to recognize the classes. The algorithm categorizes 

lean gestures into one of the classes for interaction 

purposes. In a second study, we evaluate the model and 

propose interaction scenarios that use lean detection.  

Author Keywords 
Leaning; tabletop interaction; interactive surface; lean 

recognition; active shape models.  

ACM Classification Keywords 
H.5 Information interfaces and presentation (e.g., HCI) 

(I.7), H.5.2 User interfaces (D.2.2, H.1.2, I.3.6). 

INTRODUCTION 
Interactive tabletop surfaces 1 allow direct manipulation of 

the interface by recognizing touch events. While direct-

                                                 

 

 

 

 

 

 

touch input typically happens at single or multi-finger level 

[11], users tend to lean on the table using different parts of 

their arm while interacting with multi-touch surfaces [2, 9]. 

Such leaning behavior often occurs as a result of distal 

object selection, fatigue [20], or the need for extra support 

during high-precision tasks [16]. However, this behavior is 

often not processed very well by current interfaces, thus 

reducing accuracy and usability [6]. 

A common approach to solve this problem is to detect and 

discard multitouch contact points above a set threshold [2, 

18]. Besides simply offering binary lean detection 

information, such approaches discard all information from 

unintended contact postures that could, potentially, be used 

to improve user interaction with tabletops. In particular, we 

believe that lean contact information can be employed by 

the interface for adaptive decision making because it 

contains information about the presence, posture, and even 

emotional state of a user. 

In this paper we first present a user study conducted to 

understand different leaning postures (referred to as lean 

postures) users take while performing common tasks on 

tabletops, in order to generate a posture set for unintended 

lean contacts with the interactive surface. We then present 

an Active Shape Model (ASM)-based [1] algorithm to 

recognize four classes of lean postures. The algorithm also 

yields information on the user’s position in relation to the 

surface and handedness of the posture. Finally, in a second 

study, we evaluate the model and propose possible 

scenarios that illustrate its utility.  
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RELATED WORK  
To process unintended contact as undesirable touch events, 

designers are advised to consider gestures that are suitable 

for interaction with multitouch devices, and to avoid 

gestures that require unnecessary arm movements and 

tapping actions [20]. These include asking the user to 

identify the tabletop workspace before interacting with the 

device [6, 13], or considering only oblique touches as user 

input [8]. Other techniques reject them [15] or adjust the 

interface based on the unintended contact areas [3, 7, 16]. 

Other approaches leverage contact areas larger than the 

fingertips as alternative input techniques. For instance, 

contact areas of different parts of the hand were proposed as 

new input streams [17], or as means of expanding the range 

of expressive input gestures on multitouch surfaces [7, 19, 

20]. Empirical results show the potential utility of those 

alternative gestures in tabletop interaction scenarios [5, 10]. 

Hand posture sets for multitouch interactions are only 

conceptually proposed [4, 17]; and empirical usability 

studies rely on Wizard of Oz techniques [5] to simulate 

posture recognition, or utilize thresholds to distinguish 

between small and large contact areas [16]. Other tabletop 

gesture recognition systems depend on external hardware 

and more complex setups [8, 18, 19]. Existing built-in depth 

sensor images are often used for detecting multitouch rather 

than hand gestures [15]. To our knowledge, there has not 

been any work attempting to recognize and categorize lean 

contacts to enhance user interaction on tabletops.  

STUDY 1: DEVELOPING A LEAN POSTURE SET 
We conducted an explorative user study to understand 

common lean postures that occur while interacting with 

tabletops. We used the data obtained to build preliminary 

insights on how lean postures differ. 

We simulated a tabletop display using a glass panel covered 

with thin paper through which light could pass. The contact 

areas could thus be recorded using a depth camera located 

beneath the table. The study involved four users (three 

female; two left-handed; mean age=28). User behavior was 

video recorded while performing two tasks (solving a 

tangram puzzle and sketching), under two conditions 

(standing and seated). The users performed three trials per 

task. The sketching task was performed with water-based 

artistic materials to simulate one finger input, while the 

puzzle task required single or bi-manual interactions on 

small objects. The order of tasks was counterbalanced 

among participants. 

Two researchers worked together to manually analyze and 

classify all the captured touch data on the table surface 

based on their size, length and shape differences as well as 

the body parts generating them, and related the data to 

corresponding behaviors in videos to determine a set of lean 

posture categories. The result was then discussed and 

agreed with other two researchers. Our analysis yielded 

four distinct classes based on the significant differences in 

their shapes and the body parts generating them: elbow 

(Class 1), forearm (Class 2), partial hand (Class 3), and full 

palm (Class 4) as shown in Figure 1. There are internal 

shape variances within Classes 2, 3 and 4. Within Class 2 

shapes vary with how much a user’s forearm contacts the 

table’s surface. Within Class 3, shapes depend on how a 

user’s hand rests on the table. Within Class 4, standing 

gives a slightly smaller shape area than sitting. It should be 

noted that we observed lean postures involving varying 

number of fingers, but chose not to include these in this 

work due to high complexity. 

PROOF-OF-CONCEPT ALGORITHM 
In this section we propose a proof-of-concept vision-based 

algorithm as a first attempt to recognize lean postures. We 

employed ASM for our model since this is established 

practice in the computer-vision community. We developed 

four ASMs with respect to four lean posture classes; each 

going through the following steps (see Figure 2): 

 Thirty sample images of each lean posture category per 

class were selected from the training dataset after 

flipping the depth image to represent the same hand 

(right hand). 

 The samples were placed at the center of a global 

coordinate system and were rotated to have a similar 

vertical angle. Seventy contour points were manually 

defined around the contact area of each sample.  

 An ASM was trained for each class from the samples 

of the categories they cover. 

 

 
Figure 2: Modeling steps for each lean posture: (a) sample 

images of the lean posture, (b) defined contour points on 

vertically aligned images, (c) binary representation of the 

lean contact area, and (d) the mean model for the lean 

posture. 

The four ASMs were applied to the lean contacts in 10 

iterations to classify observed lean contacts. We then 

compared the alignment results of each of the four models 

to the contact area using normalized cross correlation 

(NCC) [12]. The model and its corresponding class with the 

best NCC score exceeding a given threshold (0.3) was 

selected.  

A user’s handedness or position around the tabletop could 

be inferred from the lean posture. The potential table side 

(sides) of the user was determined by measuring the 

greatest planar distance from the touch area to each side of 

the tabletop and discarding the sides further than the length 

of the whole forearm, taken from the training dataset. For 

Class 2, the left- and right-handedness of the touch is 

determined by the angle of the touch area with regards to 



the tabletop’s coordinate system and the potential 

location/side of the user. 

For Classes 1, 3, and 4, the interaction area of the user 

needs to be considered to determine handedness of the 

contact. The reason is that the elbow with its round shape 

only conveys limited rotational information unless a small 

part of the forearm is also in contact with the screen. The 

angle of the detected posture in the partial hand class and 

full palm class did not perform well for determining 

handedness, due to the shape of the model. 

STUDY 2: EVALUATING THE MODEL 
We built an application running on a horizontally placed 

Samsung SUR40 (40-inch screen size), which uses 

PixelSense (infrared-based) technology to capture images 

of users’ touch interactions on the screen. Sensors in the 

individual pixels in the display register what is touching the 

screen at two frames per second (FPS). Our informal 

observation in study 1 revealed that users did not change 

their lean contacts too quickly or too often in a short period 

of time. Hence, this capture frame rate is sufficient to 

acquire necessary and skip unnecessary data. The 

application was remotely controlled by an Android 

application to avoid distracting participants during the 

experiment. An RGB camera placed 50 cm in front of the 

table also recorded user behavior on and above the table. 

To collect data to train and evaluate the model, we recruited 

20 participants (5 females), averaging 24.5 years old 

(SD=3.02) in the university campus and nearby companies. 

43% of the participants had prior interaction experience 

with interactive tabletops. Users were seated to perform 

three tasks (typing, sketching and tangram puzzle solving) 

on a table. They performed a typing and sketching task 

individually and were paired to solve the tangram puzzle. 

These tasks were chosen considering current tabletop 

applications (maps, photos, browsing, and drawing), natural 

posture of a user while working at table (leaning) and vision 

of tabletop applications in daily use in the future (office 

works like writing/drawing, typing or multi-user 

collaboration). 

All the artifacts presented to participants within the 

experiment such as drawing paper, simulated keyboard 

(keyboard image printed on a paper) and tangram puzzle 

pieces were made from transparent plastic foils (Figure 

3a,b,c). This helped avoid the occlusion of physical artifacts 

on the touch interaction of users in the captured infrared 

images (Figure 3d). Captured depth images in this study 

were used to train and test the algorithm using a leave-one-

out strategy.   

The algorithm was tested on a 64-bit operating system PC 

with an Intel® Core™ i7-2600 CPU and 16GB of RAM. 

Table 1 shows the algorithm’s accuracy and mean 

recognition time. The best accuracy at 94% was achieved 

with Class 4. However this lean class often appeared when 

users were idle, hence not much meaningful information to 

be utilized as an input. The relative lower accuracy 

observed for class 2 was due to those leans with a smaller 

contact area compared with a longer shape used in the 

training phase. Class 1 and Class 3 had a similar acceptable 

recognition rate. Our observation also revealed that Class 1 

and Class 2 appeared more frequently than the others. There 

are two cases where the algorithm could not detect any lean 

although leans did appear in the image contents. 

Conversely, the algorithm wrongly recognized leans in five 

test images whose content did not contain any lean. The 

algorithm performed similarly for about one second for all 

classes. We also observed that lean contacts did not change 

quickly while a user was performing a task. For example, 

when sketching and typing, users often rested their forearm 

or part of the hand stably and just mainly used their fingers 

to perform the task (typing or controlling a pen to draw). 

Similarly, in the tangram puzzle, lean contacts changed at a 

rather low frequency; we assume to avoid fatigue. 

Additionally, any decision made in response to lean 

contacts is not critical to the user’s task at hand. Since the 

posture is unintended, the recognition method also only 

facilitates task performance in non-obtrusive ways. Thus, 

intentional system or interface adaptiveness in (near) real-

time is not necessarily the goal of the proposed method. A 

recognition time of about one second seems acceptable for 

the scenarios we studied here.  

 

Figure 3: Tabletop workspace examples with (a) transparent 

foil in drawing task, (b) keyboard printed on transparent foil, 

(c) transparent puzzle pieces, and (d) infrared image captured 

by tabletop pixel-level sensor in the experiment. 

DISCUSSION AND OUTLOOK 
Recorded data (see Figure 4) helped us observe cases where 

users implicitly and unintentionally formed their personal 

territories by different combinations of lean postures. In 

future work, these combinations of postures and 

corresponding personal spaces could be recognized based 

on lean contact information such as location, orientation, 

category, handedness, boundaries, etc. which were shown 

to be extractable by our proof-of-concept, computer-vision 

based algorithm. 

   

Figure 4: Tabletop workspace with (left) two forearm leans 

framing a closed personal space, (center) right user creating 

an open space with forearm and elbow, and (right) two 

forearm lean contacts forming a partially open personal space. 

Bright regions are paper sheets presenting the task; such 

shapes are not yet recognized by our method. 



We also expect that leveraging lean postures may contribute 

to tabletop territory management [14]. In particular, Class 1 

and Class 3 may help in dynamically determining personal 

territories on the table in unobtrusive ways rather than 

asking a user to explicitly do that [13]. Hence, subtle cues 

can be offered to users such as intelligent grouping of 

personal and shared items, adjusting content to make it 

more visible to the users, acknowledging user’s presence, or 

adaptively showing and adjusting tools/widgets suitable to 

the current task. Moreover, information extractable from 

lean contacts might also help recognize the current posture 

of the users, which can be combined with conversational 

gesture theories to better understand and support users and 

their relation in a collaboration session such as making 

them more active or engaged in the collaboration. 

 

  Recognition output   

  Class 1 Class 2 Class 3 Class 4 No lean Accuracy Recognition time (s) 

Im
a

g
e co

n
te

n
t 

Class 1 34 0 6 0 0 85% 0.99±0.02 

Class 2 16 102 11 12 1 72% 0.98±0.04 

Class 3 5 1 46 2 1 84% 0.99±0.02 

Class 4 1 1 0 32 0 94% 0.99±0.03 

No lean 0 1 3 1    

Table 1: Performance results of the recognition algorithm for each lean class tested with data from study 2. 
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